Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 229-237, 2022.
Article in Chinese | WPRIM | ID: wpr-940333

ABSTRACT

In this study, name, origin, producing areas, harvesting time and processing methods of ancient Alismatis Rhizoma were systematically researched by consulting the literature of ancient herbs, medical and prescription books, so as to provide a basis for the development of famous classical formula containing this herb. According to textual research, the main base of ancient Alismatis Rhizoma was Alisma plantago-aquatica and A. orientale. A. canaliculatum and A. gramineum and other genera were sometimes used as the source of Alismatis Rhizoma, there was a confusion of medicinal varieties. The earliest producing area of Alismatis Rhizoma was in today's Henan province, and later Hanzhong, Shaanxi province, became the high-quality producing area of Alismatis Rhizoma. Since the Ming dynasty, its production area expanded to Fujian. In the Qing dynasty, Jian'ou in Fujian was the authentic production area of Alismatis Rhizoma. In the period of the Republic of China, Sichuan and Jiangxi were added to the production areas of Alismatis Rhizoma. Based on the research results, it is suggested that the dried tubers of A. orientale from Fujian and Jiangxi or A. plantago-aquatica from Sichuan should be used in the famous classical formulas. In ancient times, Alismatis Rhizoma was processed by wine, but most of the standards and specifications in modern times are no longer included the processing specifications of Alismatis Rhizoma with wine. Although salt-processed Alismatis Rhizoma is commonly used in modern times, it didn't become one of the main processing methods until the Qing dynasty. According to the relevant national documents, it is suggested that Alismatis Rhizoma without clear processing requirements in famous classical formulas should be used as raw products, and the formulas with processing requirements should be selected as processed products such as salt and wine according to the meaning of the formulas.

2.
China Journal of Chinese Materia Medica ; (24): 2119-2132, 2021.
Article in Chinese | WPRIM | ID: wpr-879169

ABSTRACT

Based on the systematic retrieval and the reported components of Sojae Semen Nigrum and Sojae Semen Praeparatum, this study conducted in-depth analysis of conversion of components in the fermentation process, and discussed types and possible mec-hanisms of conversion of chemical components, so as to provide the basis for studying technology, medicinal ingredients and quality standards. According to the analysis, there is a certain degree of conversion of nutrients(like protein, sugar, lipid), bioactive substances(like isoflavones, saponins, γ-aminobutyric acid) and other substances(like nucleosides, melanoids, biamines, etc) in the process of fermentation.


Subject(s)
Chromatography, High Pressure Liquid , Fermentation , Isoflavones/analysis , Semen/chemistry , Soybeans
3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 222-232, 2021.
Article in Chinese | WPRIM | ID: wpr-906444

ABSTRACT

The historical evolution, fermentation technology and key links of Sojae Semen Praeparatum (SSP) were sorted out by consulting ancient books and modern literature, and the influencing factors and control methods of quality were analyzed and summarized in order to provide reference for the quality control of SSP. After analysis, it was found that in the fermentation process of SSP, fermentation strains, miscellaneous bacteria, temperature and humidity were all important factors affecting the quality of SSP. The condition control of "post fermentation" process has been paid more attention to in the past dynasties. In addition, the delicious SSP recognized in ancient times should be made from mold fermentation, and the breeding and application of fermented mold may be the key point to solve the quality problem of SSP. Therefore, based on the evaluation indexes of SSP in the past dynasties, it is of great significance to study and optimize the technological conditions such as strain, temperature and humidity in depth to improve the quality of SSP.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 68-75, 2021.
Article in Chinese | WPRIM | ID: wpr-906365

ABSTRACT

Objective:The chemical constituents in guarana (<italic>Paullinia cupana</italic> dried seeds) were systematically analyzed to provide a basis for further research, development and utilization of this plant. Method:The contents of crude protein, crude fat, crude polysaccharide and crude fiber in guarana were determined according to national standards and related documents, and the chemical constituents of guarana was qualitatively analyzed by ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS), ACQUITY UPLC-HSS-T3 column (2.1 mm×100 mm, 1.8 μm) was used with 0.1% formic acid aqueous solution (A)-0.1% formic acid acetonitrile solution (B) as mobile phase for gradient elution (0-5 min, 2%-10%B; 5-6 min, 10%-20%B; 6-9 min, 20%-30%B; 9-9.5 min, 30%-35%B; 9.5-10.5 min, 35%-45%B; 10.5~13 min, 45%-55%B; 13-15 min, 55%-80%B; 15-19 min, 80%-98%B; 19-20 min, 98%B; 20-20.3 min, 98%-2%B; 20.3-23 min, 2%B), the electrospray ionization (ESI) was used for detection in positive and negative ion modes, the scanning range was <italic>m</italic>/<italic>z</italic> 50-1 500, and the structure was identified according to the relative molecular weight and fragment information combined with database matching and comparison of reference substances. Result:The contents crude protein, crude fat, crude polysaccharide and crude fiber in guarana were (0.63±0.03)%, (2.73±0.09)%, (3.23±0.12)% and (8.89±0.59)%, respectively. A total of 42 chemical constituents in guarana were identified by UPLC-Q-TOF-MS, including 3 methylxanthines, 2 nucleosides, 1 amino acid, 3 organic acids, 33 flavonoids, 3 (<italic>L</italic>-tryptophan, epigallocatechin gallate, daidzein) of which were first discovered in guarana. Conclusion:Guarana is rich in nutrients and has good potential to be developed as a functional food. UPLC-Q-TOF-MS technique provides a simple, rapid and accurate method for the identification of chemical constituents in guarana. Methylxanthines and proanthocyanidins are the main chemical constituents of guarana, which is meaningful for quality evaluation and material basis of guarana.

5.
China Journal of Chinese Materia Medica ; (24): 2130-2137, 2020.
Article in Chinese | WPRIM | ID: wpr-827971

ABSTRACT

The purpose of this article is to study the degradation of chemical compositions after the silkworm excrement being expelled from the silkworm, and to determine its main metabolic compositions and their changing relationships. This research is based on UPLC-Q-TOF-MS technology. Based on the systematic analysis of the main chemical compositions contained in silkworm excrement, the principal compositions analysis(PCA) and partial least squares discriminant analysis(OPLS-DA) on commercial silkworm excrement and fresh silkworm excrement were analyzed for differences. The S-plot chart of OPLS-DA was used to select and identify the chemical compositions that contributed significantly to the difference. At the same time, the relative peak areas of the different compositions were extracted by Masslynx to obtain the relative content of different compositions in fresh silkworm excrement. The results showed that there was a significant difference in the chemical compositions between fresh silkworm excrement and commercial silkworm excrement. The difference compositions were mainly flavonoid glycosides and Diels-Alder type composition, and two types of compounds are degradated during the storage of silkworm sand. In this study, the chemical compositions of fresh silkworm excrement were systematically identified and analyzed for the first time by mass spectrometry, and it was found that some chemical compositions of silkworm excrement were degradated with time during storage.


Subject(s)
Animals , Bombyx , Chromatography, High Pressure Liquid , Discriminant Analysis , Drugs, Chinese Herbal , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL